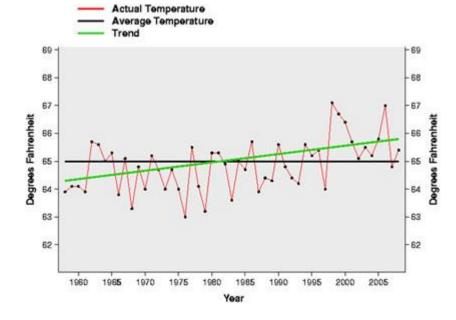
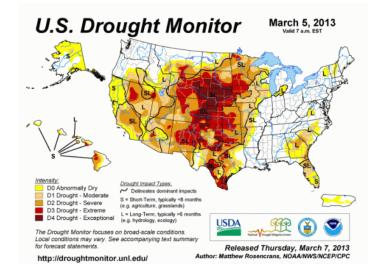
Emerging Climate Change Issues: Health x Forage x Genetic Interactions

Joan M Burke USDA ARS Dale Bumpers Small Farms Research Center Booneville, AR

Introduction

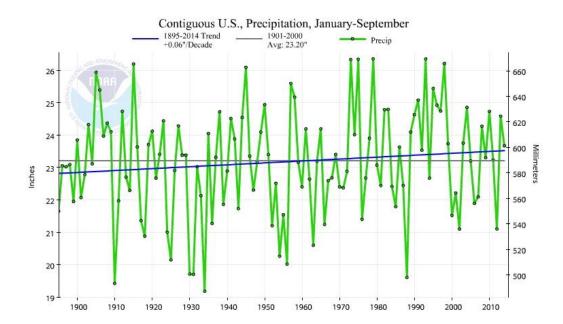
- * Climate Change
- * Impact on livestock health and production
- * Impact on forages
- Genetic selection to combat climate change in livestock systems




Climate Change

- * Changes in temperature warming
- * Changes in rainfall patterns
- * More extreme weather events

Indicators of Change



Drought

Flood

* Fecal pathogens
* Botulism
* Anthrax
* Mosquitos

Global Impact of Climate Change

- * Climate change leads to malnutrition from crop failure (human and livestock) (Patz, 2005).
- * Less diversity of species.
- * More competition of species.

Impact on Livestock Grazing Systems

- Changes in pasture growth
- Changes in pasture composition ratio of legumes to grass; warm to cool season
- * Changes in forage quality
- * Changes in rainfall
- * Increased evaporation from soil and water

Impact to Animal

- Heat stress reduced grazing/feeding, reproduction, growth to alleviate thermal load.
- Diseases and disease vectors increase the rate of development of pathogens or parasites; increase their range; increase mutations.
- * Suppressed immunity in response to UV radiation (Baylis and Githeko, 2006).

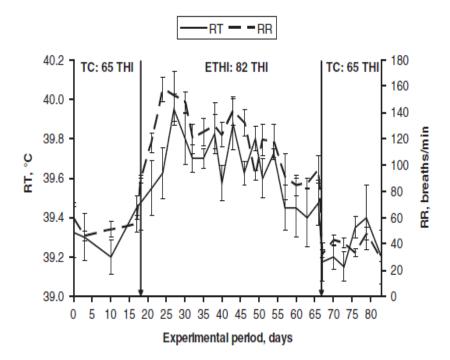
Examples of Climate Change related to Small Ruminants

- ParaBoss News December 2014 All State Alert: State reports indicate that barber's pole worm is already becoming a problem in areas well beyond its usual locations.
- * Climate change and the recent emergence of bluetongue in Europe (Purse et al., 2005; Guis et al., 2012); Schmallenberg virus (Gibbens, 2012).

Bluetonguesheep.blogshopt.com

Fescue Toxicosis in Sheep

- October 2014 31% of lambs lost within 48 hours due to starvation; no milk production from dam.
- * Ergoalkaloids were 1.63 ppm.
- No signs of fescue toxicosis ever observed in ARS ewes before this.
- * However, more feet problems.


Genetic Selection to Combat Climate Change

- * Identify traits that can be selected for.
- * Anticipate the future.
- * Use examples from the past.

Heat Stress

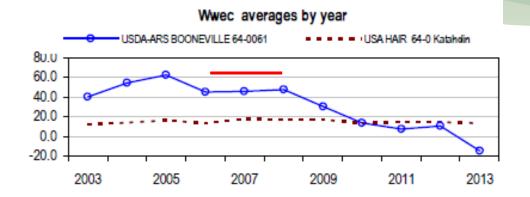
- Heritability difficult to measure; more effective with higher THI (Ravagnolo and Misztal, 2000).
- * Markers Hsp70.
- Breeds tropically adapted breed more tolerant.

Bernabucci et al 2010

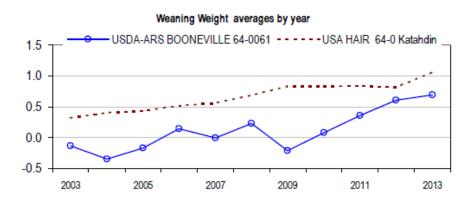
Consider Hair Coat in Selection

Selection for Other Stressors

- Fescue toxicosis: Cattle producers may have selected for fescue tolerant cows. Rye grass staggers; heritability in sheep 0.43 (Bishop and Morris, 2007).
- * Foot rot: heritability 0.30 (Raadsma et al 1994); Broomfield Corriedales selectively bred for resistance (Skerman and Moorhouse, 1987).



Gastrointestinal Nematodes


- * FEC as high as 0.5 depending on when collected (Notter et al.).
- * PCV heritability 0.4 (Albers et al, 1987).
- * Dag moderate heritability 0.24 (Bisset et al., 1992).

Selection for GIN Resistance – ARS, Booneville

Dry conditions

NSIP EBVs for Katahdin Breed

	NLW	NLB	PSC	PFEC	WFEC	PEMD	PFAT	PWWT	WWT	MWWT	BWT
USA Hair	%	%	cm	%	%	mm	mm	kg	kg	kg	kg
109.0	19	8		-64	-46		0.1	-0.5	0.0	0.7	0.0
	36	40		78	73			64	61	45	60
106.7	13	4		-68	-60		0.2	0.4	-0.1	0.7	-0.3
	31	34		79	75			66	62	36	62
111.3	22	12		-11	8			1.8	1.4	(1.2	0.3
	35	38		77	72			63	60	43	60
111.3	22	12		-14	-1			1.4	1.1	1.2	0.2
	35	38		77	72			63	60	43	60
106.3	18)	19 (145	144			-0.1	0.1	-0.1	0.1
	36	39		74	70			62	<u>59</u>	45	59
106.6	18	19		-42	-8			2.9	1.4	-0.1	0.2
	36	39		74	70			62	59	45	59
106.7	13	3		-89	-77		0.2	0.7	0.1	0.6	-0.2
	34	37		78	74			64	61	41	61
106.8	13	3		-94	-82		0.1	1.5	0.5	0.6	-0.3
	34	37		77	70			64	61	41	61

Environmental Effects on Selection

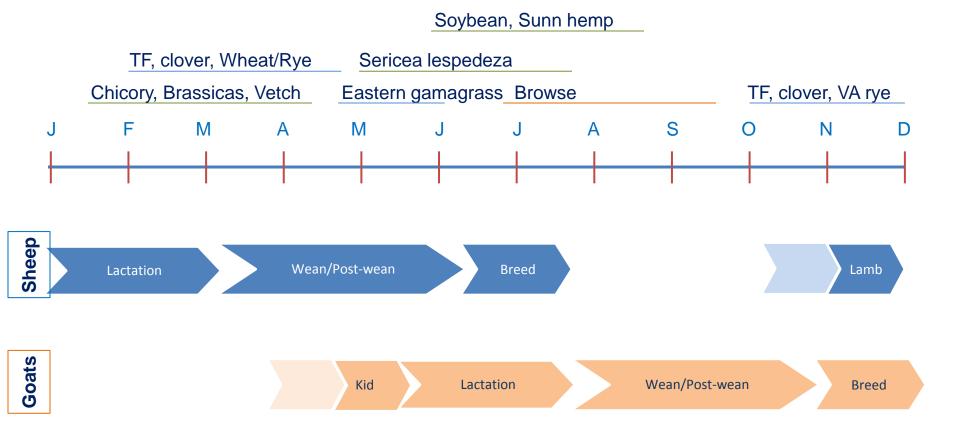
- * Intensive or extensive management will benefit from selection for health traits.
- Extremes during selection must be present (high THI for heat stress; warm, humid conditions for FEC; etc.).

Native Pastures

- * Reduce evaporative losses from soils.
- * Increase soil health.
- * Greater diversity in microenvironment.
- * Greater diversity in wildlife, pollinators.
- * More self-sustaining.

Goats: Selection to Climate Change

- Goats prefer a greater diversity of forages than sheep, more browse, less grass. Goats seem more tolerant of toxins than other livestock.
- Goats can tolerate internal parasites in a browse or native system. External parasites may still be an issue in humid climates.
- * NSIP will be of value for selection indices with more numbers.



Southern Pastures that Tolerate Climate Change

- * A return to the past.
- * Native forages (legumes and grasses).
- * Long rotations.
- * Multi-species grazing.
- * Integrate the animal into the system.

Matching production phases of sheep and goats to forages in West Central Arkansas

Summary

- * Acclimate the animal to the environment.
- * Select the animal for a changing environment.

